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Abstract

We present a computational approach for the WKB approximation of the wave function of an electron moving in a

periodic one-dimensional crystal lattice. We derive a nonstrictly hyperbolic system for the phase and the intensity where

the flux functions originate from the Bloch spectrum of the Schr€odinger operator. Relying on the framework of the

multibranch entropy solutions introduced by Brenier and Corrias, we compute efficiently multiphase solutions using

well adapted and simple numerical schemes. In this first part we present computational results for vanishing exterior

potentials which demonstrate the effectiveness of the proposed method.
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1. Introduction

This article is the first part of a numerical study of semiclassical approximation of the motion of elec-

trons in short-scale periodic potentials. This phenomenon is quantum mechanical and we shall represent

particles as wave packets with localized wave numbers j. Then if such a wave packet spreads over many
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lattice periods, the wave number can be considered constant and the dynamics are ruled by the energy

bands. This is of common use in solid-state physics [2].

More precisely, we start from the Schr€odinger equation in one space dimension

i�hotwþ �h2

2m
oxxw ¼ eV ðxÞw; x 2 R ð1Þ

with �h is the Planck constant, m and e are the electronic mass and charge and V 2 R is the periodic potential

modelling the interaction with a lattice of ionic cores in one space dimension (x 2 R). We first change to

‘‘atomic units’’ for which �h ¼ m ¼ e ¼ 1. Then we introduce the dimensionless parameter e as the micro-
scopic–macroscopic ratio; we assume it small and track wave packets with a spatial spreading of the order

of 1=e. We recast (1) in macroscopic variables x 7!x=e, t 7! t=e (i.e. we study OðeÞ-wavelength solutions) and

a scaled problem arises

ieotwþ e2

2
oxxw ¼ V

x
e

� �
w; V ðxþ 2pÞ ¼ V ðxÞ ð2Þ

for which the limit e ! 0 is of special interest. We assumed the period to be 2p on the atomic lengthscale for

the sake of simplicity only.

From the mathematical point of view, the asymptotics of (2) correspond to a combined semiclassical and
homogenization limit. Rigorous theorems in this direction have been proven in the last decade by the

authors of [4,27,42,46,49]. Wigner transforms of the wave function w were extensively used (�: stands for

complex conjugation)

W ðt; x; nÞ ¼
Z
R

w t; x
�

þ ey
2

�
�w t; x
�

� ey
2

�
expðinyÞ dy: n 2 R:

In fact, in order to take full advantage of the periodic structure of (1), the right object has been found to be

the so-called Wigner series which reads

wðt; x; jÞ ¼
X
j2Z

wðt; xþ ejpÞ�wðt; x� ejpÞ expð�2pijjÞ; j 2 B ð3Þ

and from which one can deduce for instance the electron�s position density

qðt; xÞ ¼
Z
B
wðt; x; jÞ djjBj ; B the first Brillouin zone:

A summary of these results will be presented in Section 2.3. Before going further, some classical definitions

are recalled in order to facilitate the understanding of this paper in terms of the existing literature:

• The Bravais lattice for (1) and (2) is C ¼ 2pZ; its primitive cell is �0; 2p½.
• The reciprocal lattice C0 is the set of wave numbers j for which plane waves expðijxÞ have the same pe-

riodicity as the potential V ; i.e. C0 ¼ Z.

• The first Brillouin zone B is the Wigner–Seitz cell of the dual lattice C0 made of all j closer to zero than to

any other dual lattice point; B ¼� � 1
2
; 1
2
½.

Then, by means of (3), one passes from (2) as e ! 0 to a kinetic equation for a density f ’ w which is
solution of the transport equation

otf ðt; x; jÞ þ E0
nðjÞoxf ðt; x; jÞ ¼ 0; f P 0: ð4Þ

The set of all functions EnðjÞ corresponds to the band structure of (2) whose derivation will be presented in

detail in Section 2.2. From these considerations, one could deduce that this ‘‘Wigner approach’’ also
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indicates an appropriate route towards computational algorithms. Indeed, upon taking j-moments of (4), a

system of conservation laws can be written when assuming that f ðt; x; jÞ ¼
P

‘ q‘ðt; xÞdðj� p‘ðt; xÞÞ, which
means that particles of mass/velocity q‘=p‘ are tracked in phase space while moving according to the
Hamiltonian EnðpÞ. However, these weakly hyperbolic systems turn out to be rather delicate to simulate

[23,36,48] since even for the simplest case ‘ � 1 (the so-called monokinetic density), one faces the pres-

sureless gas problem admitting measure-valued solutions; see [10,15] and references therein.

An alternative strategy can be proposed relying on classical WKB expansions, see [38] and the original

references in [17]. Considerations of this nature usually lead to simpler systems made of a Hamilton–Jacobi

equation for the phase of the wave function coupled to a continuity equation for its intensity. However, at

this level, the difficulty lies more in finding a way to elicit a correct solution: clearly the framework of

viscosity solutions [22,26,31] does not fit since the entropy conditions destroy the folds generally appearing
in phase space. It has been recently shown that when the number of these folds is finite, there exists a way to

reconstruct exactly the ‘‘geometric solution’’ [13,35] by solving a much less singular moments system.

Roughly speaking, it consists in solving (4) with the smoother kinetic density f ðt; x; jÞ ¼P
‘ð�1Þ‘�1Hðp‘ðt; xÞ � jÞ, H is the Heaviside function, following [14] as will be developed in Section 3.1 (the

cases ‘ ¼ 1; 2 have been treated in [13,43,44]); this technique has already been investigated numerically in

[30,32,48]. For other methods, we refer the reader to [6,16,23,37,50]. We stress that, besides a possibly lower

computational cost, a semiclassical simulation presents advantages when compared to a direct simulation

of the wave function satisfying (1): it naturally reveals the band and caustic structures.
When carrying out the WKB asymptotics in Section 2.1 in the spirit of [33], an essential point lies in

computing efficiently the Bloch spectrum of the Hamiltonian operator Hðx; ioxÞ ¼ �ð1=2Þoxx þ V ðxÞ. This
constitutes one of the main numerical difficulties as it amounts to solving an eigenvalue problem for a

Sturm–Liouville equation [53]. We propose in Section 2.2 a way around it avoiding semiclassical quanti-

zation [18,21,38] but using spectral techniques. Finally, Sections 4 and 5 are devoted to the study of

practical examples including the Mathieu�s equation and the Kronig–Penney model [40]. Numerical

computations making use of the so-called parabolic band approximation [2,47] for moderate wave numbers

and a Fourier representation of the bands when considering the whole Brillouin zone are presented. The
most classical approach is of course ray-tracing in phase space; however, its accuracy can sometimes be

really low when compared to Eulerian methods [6,50]. We also present preliminary numerical comparisons

between a direct Fourier simulation of (2) and a multiphase WKB approximation relying on the afore-

mentioned K-branch solutions. In Appendix A, we comment on the connection with effective Hamiltonians

obtained when homogenizing Hamilton–Jacobi equations in the sense of [19,20,41].

We close this introduction mentioning that in a forthcoming paper (Part II of this work), we shall report

on computations with nontrivial exterior potentials; that is to say, approximation for small values of e of

ieotwþ e2

2
oxxw ¼ V

x
e

� ��
þ VeðxÞ

�
w; ð5Þ

instead of (2) in case Ve 2 R is smooth. A concrete example is Coulomb interaction; first considerations on

this more delicate problem are stated in Section 6.
2. The WKB method in one space dimension

We are concerned with highly oscillating wave-packet solutions of the Cauchy problem for the following

one-dimensional Schr€odinger equation:

ieotwþ e2

2
oxxw ¼ V

x
e

� ��
þ VeðxÞ

�
w; e ! 0; ð6Þ
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where V is 2p-periodic and Ve is smooth. Generally, one is tempted to describe these solutions by means of

plane waves of the form wðt; xÞ ¼ Aðt; xÞ expðiuðt; xÞ=eÞ for A and u being possibly multivalued; plugging

this ansatz into (6) leads to a relation between the wave�s phase u and its amplitude A:

�A otu

 
þ ðoxuÞ2

2
þ V

x
e

� �
þ VeðxÞ

!
þ ie

2
2otAð þ Aoxxuþ 2oxA oxuÞ þ

e2

2
oxxA ¼ 0:

Splitting this equation into real and imaginary parts yields

otuþ ðoxuÞ2

2
þ V

x
e

� �
þ VeðxÞ ¼

e2

2A
oxxA; otðA2Þ þ oxðA2 oxuÞ ¼ 0: ð7Þ

Moreover, neglecting the term e2oxxA=2A leads to the weakly coupled system

otuþ ðoxuÞ2

2
þ V

x
e

� �
þ VeðxÞ ¼ 0; otðA2Þ þ oxðA2 oxuÞ ¼ 0: ð8Þ

The phase u evolves according to a nonlinear Hamilton–Jacobi equation whose Hamiltonian

Hðx; x=e; pÞ ¼ p2=2þ V ðx=eÞ þ VeðxÞ contains a fine-scale term. The intensity of the plane wave jwj2 ¼ A2

evolves in time according to a linear conservation law whose velocity field is given by the x-derivative of u.
Still, this system needs to be homogenized in order to describe the limit behaviour as e ! 0 of (6); such a

theory exists up to now only in the context of viscosity solutions (see [19,20,24,25,41] and Appendix A of

this paper) which does not fully describe the dispersive structure of (7).
2.1. WKB expansion and emergence of the Bloch spectrum

As we just saw, the naive ansatz does not have the correct structure as it leads to a system in which the
small parameter e remains present. Hence following [7,33], a refinement can be proposed considering a two-

scale amplitude

A t; x; y
�

¼ x
e

�
¼ A0ðt; x; yÞ þ eA1ðt; x; yÞ þ � � � ; A t; x; yð þ 2pÞ ¼ Aðt; x; yÞ: ð9Þ

Taking this new dependence into account inside (6) yields the expression

� Aotuþ 1

2
oyyA
�

� AðoxuÞ2 þ 2iðoxuÞðoyAÞ
�
� V ðyÞð þ VeðxÞÞA

þ ie
2

2otA
�

þ Aoxxuþ 2oxA oxu� 2ioxyA
�
þ e2

2
oxxA ¼ 0: ð10Þ

• The first step is to compare the Oð1Þ terms; this concerns A0

1

2
oyyA0 � V ðyÞA0 þ iðoxuÞðoyA0Þ

�
� 1

2
A0ðoxuÞ2

�
¼ A0 otuð þ VeðxÞÞ:

As we shall see below, this means that otuþ Ve has to be an eigenvalue associated to the eigenfunction A0

for a certain time-independent Schr€odinger operator. Indeed, let us consider the quantum mechanical

momentum operator p̂ ¼ ioy and look at the eigenmodes of Hðy; p̂Þ ¼ �ð1=2Þoyy þ V ðyÞ written in the

Bloch-wave form WjðyÞ ¼ expðijyÞzjðyÞ for some real wave-number j and a 2p-periodic modulation zj (see
Theorem 1). Then if Wj satisfies
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8y 2 R; Hðy; p̂ÞWj ¼ � 1

2
oyyWj þ V ðyÞWj ¼ EðjÞWj ð11Þ

for E : R ! R being 1-periodic, then it easily follows that the envelope zj solves

� 1

2
oyyzj þ V ðyÞzj � ijoyzj

�
� j2

2
zj

�
¼ EðjÞzj:

Thus Oð1Þ terms inside (10) cancel if and only if y 7!A0ðt; x; yÞ expðijyÞ is an eigenstate ofHðy; p̂Þ associated
to the eigenvalue EðoxuÞ ¼ �otu� VeðxÞ

Hðy; p̂ÞðA0 expðijyÞÞ ¼ � otuð þ VeðxÞÞðA0 expðijyÞÞ; j ¼ oxu:

Note that the slow variable x shows up only as a parameter. Written in a more compact form, an Hamilton–

Jacobi equation has been derived, where the fine scale y ¼ x=e has disappeared

otuþ EðoxuÞ þ VeðxÞ ¼ 0: ð12Þ

• The second step consists in writing A0ðt; x; yÞ ¼ a0ðt; xÞzjðyÞ with stationary orthonormal modulations:

kzjkL2ð0;2pÞ ¼ 1. Hence comparing OðeÞ terms inside (10) taking into account (9) has been shown in

[33] to be equivalent to the linear conservation law

otða0Þ2 þ ox ða0Þ2E0ðoxuÞ
� �

¼ 0: ð13Þ

All in all, starting from the Schr€odinger equation (6), one has to consider the Bloch spectral decomposition

(11) producing a countable set of distorted plane waves Wn
j, n 2 N, associated to the energy bands EnðjÞ.

Then a convenient nth band ansatz reads

~we
nðt; xÞ ¼ anðt; xÞ exp

iuðt; xÞ
e

� �
znjðx=eÞ; j ¼ oxuðt; xÞ; ð14Þ

where the unknowns evolve according to the nth band WKB system (12), (13)

otuþ EnðoxuÞ þ VeðxÞ ¼ 0; otlþ ox E0
nðoxuÞ l

� �
¼ 0; l ¼ ðanÞ2: ð15Þ

So j~we
nj
2 ¼ ljznoxuj

2
and the WKB expansion is used for the transient computation of a plane wave, the

modulation zj evolving only through the relation j ¼ oxu. In [33], it has been argued that ~we
n provides an

OðeÞ-approximation of the solution of the Schr€odinger equation (6) with identical initial datum before
caustic onset, i.e. as long as (15) admits a smooth solution. In the next subsection, we shall focus on the

Bloch wave decomposition from both theoretical and computational points of view. Note that system (15)

can recover the exact solution of (1) in case the dispersive term in (7) is zero. This happens for nth band

wavepackets which read like

weðxÞ ¼
Z
B
expðijx=eÞznjðx=eÞ dj

for which a0 � 1.

In the special case Ve � 0 and weðt ¼ 0; xÞ ¼
R
B rðjÞ expðijx=eÞznjðx=eÞ dj ¼

R
B rðjÞW

n
jðx=eÞ dj, both (15)

and (1) furnish weðt; xÞ ¼
R
B rðjÞ expðiðjx� EnðjÞtÞ=eÞznjðx=eÞ dj.

2.2. Derivation of the Sturm–Liouville eigenmodes

We begin by recalling the:
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Theorem 1 (Bloch�s theorem, [8]). Let the potential V be 2p-periodic. Then each eigenstate W of

Hðy; p̂Þ ¼ �ð1=2Þoyy þ V ðyÞ satisfies Wðy þ 2pÞ ¼ expð2ijpÞWðyÞ for all y 2 R and some value j 2 ½�1
2
; 1
2
�.

Its proof is based on the fact that H commutes with the y-translation operator s�2p; thus any eigenstate

of H is also one of s�2p for some complex eigenvalue. An important role is played by functions having

phase-shifts when translated of 2p.

Definition 1 (j-quasiperiodic functions). Any functionW 2 C0ðRÞ satisfyingWðy þ 2pÞ ¼ expð2ijpÞWðyÞ for
all y 2 R is called a j-quasiperiodic function.

Obviously a 0-quasiperiodic function is 2p-periodic. There are decomposition and synthesis relations for

functions of this kind in L2ðRÞ, see [27,46] for instance. We now define Hj as the steady operator H re-

stricted to j-quasiperiodic functions for some j 2 B. Its spectral structure is well known, see e.g. [46]; one

has to find all the pairs fEnðjÞ;Wn
j; j 2� � 1

2
; 1
2
½g for n 2 N satisfying

8y 2 R;
� 1

2
oyyW

n
j þ V ðyÞWn

j ¼ EnðjÞWn
j;

Wn
j and oyW

n
j are j-quasiperiodic:

�
ð16Þ

For any fixed j 2 B, there exists a complete set of eigenfunctions Wn
j orthonormal in L2ð0; 2pÞ with

countably many eigenvalues E1ðjÞ < E2ðjÞ < � � � < En�1ðjÞ < EnðjÞ < � � �. The set fEnðjÞ; j 2� � 1
2
; 1
2
½g is

called the nth energy band of H whereas Wn
j is a nth Bloch function (or Bloch state). We also have for all j,

EnðjÞ ! þ1 as n ! þ1 and each map j 7!EnðjÞ is extended 1-periodically. The Bloch states Wn
j have the

form already encountered in Section 2.1: Wn
jðxÞ ¼ expðijxÞznjðxÞ for a certain 2p-periodic modulation. Now

we notice that a scaling argument gives straightforwardly

Hðy; p̂ÞWn
jðyÞ ¼ EnðjÞWn

jðyÞ () Hðx=e; ep̂ÞWn
jðx=eÞ ¼ EnðjÞWn

jðx=eÞ:

Moreover, Wn
jð�=eÞ=

ffiffi
e

p
is still orthonormal in L2ð0; 2epÞ.

In order to carry out the WKB program outlined in Section 2.1, an important stepping stone is the Bloch

decomposition of H for all j 2 B. There exists several methods to do so: among them, one consists in

solving directly the Sturm–Liouville problem (16), see [53], while another one relies on semiclassical

quantization rules following [21,38] (see also [18]). We turn to a spectral approach, taking advantage of the

free package SCICILABAB (available at http://www-rocq.inria.fr/scilab) as in [39]. We consider for now the

potential V 2 C1
perðRÞ and expand it in its Fourier series:

V ðyÞ ¼
X
q2Z

V̂q expðiqyÞ; V̂q ¼
1

2p

Z 2p

0

V ðyÞ expð�iqyÞ dy: ð17Þ

Since Wn
jðyÞ ¼ expðijyÞznjðyÞ with znjðy þ 2pÞ ¼ znjðyÞ, any Bloch state can also be expanded in plane waves

written in Dirac�s notation:

8ðq; jÞ 2 Z�
	
� 1

2
;
1

2



; jq;ji ¼ expðiðqþ jÞyÞ:

Hence we have in mind to approximate the differential Sturm–Liouville equation (16) by an eigenvalue

problem for the matrix Hj defined as follows with N 2 N:

Hj ¼ hq0; jjHjjq; ji
� �

q;q0
; j 2

	
� 1

2
;
1

2



; q; q0 2 f�N ; . . . ;Ng:

The kinetic energy entries are easily calculated as

http://www-rocq.inria.fr/scilab
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� 1

2p

Z 2p

0

expð�iðqþ jÞyÞ 1
2
oyy expðiðq0 þ jÞyÞ dy ¼ 1

2
ðqþ jÞðq0 þ jÞdq;q0

with dq;q0 is the classical Christoffel symbol. The potential is to be treated the same way and using its Fourier

coefficients, one finds easily a Toeplitz representation

hq0; jjV ðyÞjq; ji ¼ 1

2p

Z 2p

0

V ðyÞ expð�iðq� q0ÞyÞ dy ¼ V̂q�q0 ;

which in turn leads to an eigenvalue problem for the following matrix:

Hj ¼

V̂0 þ 1
2
ðj� NÞ2 V̂�1 � � � V̂�2N

V̂1 V̂0 þ 1
2
ðj� N þ 1Þ2 ..

.

..

. . .
.

V̂�1

V̂2N � � � V̂1 V̂0 þ 1
2
ðjþ NÞ2

0
BBBBB@

1
CCCCCA: ð18Þ

We notice that since V ðxÞ 2 R, V̂�q ¼ �̂Vq and Hj is Hermitian. If V is even, it is real symmetric and optimized

algorithms can be used. The eigenvalues and their corresponding eigenvectors for Hj are approximations of
the energy bands EnðjÞ and the Fourier coefficients (with indices �N ; . . . ; 0; 1; . . . ;N ) of the modulations

znjðyÞ.
A simple and important case is the so-called Mathieu�s equation corresponding to (16) with

V ðxÞ ¼ cosðxÞ; all the V̂q�s are zero except V̂�1 ¼ 1=2. The outcoming matrix Hj is tridiagonal symmetric for

all j 2 B. This technique applies also to the so-called Kronig–Penney�s model [40] with discontinuous

potential

V ðyÞ ¼ 1�
X
j2Z

1y2½p
2
þ2jp;3p

2
þ2jp�; ð19Þ

and 1A stands for the characteristic function of a set A. The lattice atoms are meant to be in the potential

wells located around pð1þ 2ZÞ. Its corresponding Fourier coefficients are

V̂0 ¼
1

2
; V̂q ¼

sinðqp=2Þ
qp

:

In this case, the Hj matrix is still real symmetric but full since all frequencies are present (however, har-

monics decay like Oð1=jqjÞ). The main feature of this model lies in the fact it can be solved exactly; the first

bands EnðjÞ 2 ½0; 1� corresponding to bound eigenstates are solutions of the equation

/ðEÞ ¼ 1� 2E

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð1� EÞ

p sinhðbpÞ sinðapÞ þ coshðbpÞ cosðapÞ ¼ cosð2pjÞ ð20Þ

with a ¼
ffiffiffiffiffiffi
2E

p
and b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j1� Ej

p
. The next ones EnðjÞ > 1 which correspond to the classical regime satisfy

~/ðEÞ ¼ 1� 2E

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðE � 1Þ

p sinðbpÞ sinðapÞ þ cosðbpÞ cosðapÞ ¼ cosð2pjÞ: ð21Þ

For both examples, we display the numerical results j 7!EnðjÞ for n ¼ 1; . . . ; 5 in Fig. 1 where we chose the

size of the matrix Hj to be 101� 101. The band gaps are known to be of the order of V̂q [2]. We also display

in Figs. 2 and 3 the square of the modulations jznjðyÞj
2
for the five first bands and j ¼ 0. One can therefore

observe the noticeable difference between the two bound states associated to the valence bands which are
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Fig. 1. Band structures for Mathieu�s equation (left) and Kronig–Penney�s model (right).
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Fig. 2. Modulations jðznj¼0ðxÞÞj
2
for Mathieu�s potential; n ¼ 1; . . . ; 5 (left to right).
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Fig. 3. Modulations jðznj¼0ðxÞÞj
2
for Kronig–Penney�s potential; n ¼ 1; . . . ; 5 (left to right).
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tightly sticked onto the atoms. In sharp contrast, the first conduction band shows very small position

density in the vicinity of the atoms. As EnðjÞ increases, one arrives in the classical regime and position

densities of the corresponding Bloch states are less peaked.

2.3. Band transport equations

Typically, the Hamilton–Jacobi equation (12) (with E ¼ En for some value n of the band index) develops

caustics in finite time, i.e. sets of singularities for the phase u. Therefore, the WKB expansion is supposedly

limited to local-in-time approximations of the wave function and its quadratic observables when classical

singlevalued solutions of (12) are considered. Going beyond caustic onset is facilitated by ‘‘unfolding the

caustics in phase space’’ [35]: this can be carried through relying on (band) Wigner transforms and their
weak limits, the so-called (band) Wigner measures, as done in [27,42,46,49]. We now present a short

summary of these results, focusing on what will be needed from a computational standpoint.

Let us first notice that the Bloch spectral problem (16) induces an orthogonal decomposition of the state

space into wavepacket subspaces

L2ðRÞ ¼ �1
n¼1S

e
n; Se

n ¼ /e
nðxÞ

�
¼
Z
B
rðjÞWn

jðx=eÞ
djffiffi
e

p ; r 2 L2ðBÞ
�
:

Indeed one can write any function w 2 L2ðRÞ as

wðxÞ ¼
X1
n¼1

we
nðxÞ; we

n 2 Se
n; ð22Þ

together with

we
nðxÞ ¼

Z 1=2

�1=2

ŵeðj; nÞWn
jðx=eÞ

djffiffi
e

p ; ŵeðj; nÞ ¼
Z
R

wðxÞ �Wn
jðx=eÞ

dxffiffi
e

p : ð23Þ

The Schr€odinger equation (6) with Ve � 0 decouples into a series of ‘‘band equations’’:

ieotw
e
n ¼ EnðeDÞwe

n; n ¼ 1; 2; . . . ; ð24Þ

where EnðeDÞ is the pseudo-differential operator with Fourier multiplier EnðejÞ. The crucial feature that

EnðeDÞ leaves invariant the bandspaceSe
n is generally lost when an exterior potential Ve is incorporated. The

initial datum for (24) is obtained by L2 projection of the initial wave function on each band space Se
n

following (22) and (23). Then one sets up the band Wigner series we
nðt; x; jÞ as in (3) for each we

n and

computes the corresponding time evolution equations from (24). It is meaningful to pass to the semiclas-

sical limit e ! 0 under the assumption that the nonnegative Borel measures

8n 2 N; wn;Iðx; jÞ ¼ lim
e!0

we
nðt ¼ 0; x; jÞ

(where limits are possibly taken along subsequences) vanish on R� C, C standing for the set of band-

crossing points. We thus obtain the transport equations for the limiting nonnegative bounded measures

wn :¼ lime!0 we
n as announced in (4), see [27,46] for more details

8n 2 N; otwnðt; x; jÞ þ E0
nðjÞoxwnðt; x; jÞ ¼ 0: ð25Þ

This Cauchy problem is solved easily for t > 0, j 2 B and x 2 R,

wnðt; x; jÞ ¼ wn;I x
�

� t:E0
nðjÞ; j

�
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and (for instance) the position density qeðt; xÞ homogenizes in the following way:

qeðt; xÞ !e!0
qðt; xÞ ¼

Z
B

X1
n¼1

wn;Iðx� t:E0
nðjÞ; jÞ dj:

Assume now that the initial wave function is of the WKB type

wðt ¼ 0; xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
qIðxÞ

p
expðiuIðxÞ=eÞ;

where qI 2 Rþ and uI 2 R are smooth functions. It is an easy exercise to show that the weak limit of the
band-Wigner function (3) associated to wðt ¼ 0; :Þ as e ! 0 is the monokinetic phase space measure

wðt ¼ 0; x; jÞ ¼ qIðxÞd# jð � oxuIðxÞÞ; ð26Þ

where d# stands for the 2p-periodic Dirac distribution: d# ¼
P

j2Z dð:� 2jpÞ.
Denote by Ie

n the orthogonal L2ðRÞ-projector onto each one of the band-spaces Se
n defined at the be-

ginning of this section

ðIe
nwÞðt; xÞ ¼ we

nðt; xÞ ¼
Z 1

2

�1
2

Z
R

wðt; yÞ �Wn
jðy=eÞ

dyffiffi
e

p
� �

Wn
jðx=eÞ

djffiffi
e

p ;

and by we
n;I the band Wigner transform of Ie

nwðt ¼ 0; :Þ. If all the bands En are isolated (which is possible in

one space dimension), there holds [27], Section 4:

wðt ¼ 0; x; jÞ ¼
X
n2N

wn;Iðx; jÞ; we
n;I *

e!0
wn;I :

Since each wn;I is a bounded nonnegative measure, we conclude that it is supported inside the Lagrangian

manifold fðx;uIðxÞ þ 2jpÞ; x 2 R; j 2 Zg. Hence we have in the limit e ! 0 ‘‘band monokinetic initial

data’’:

8n 2 N; wn;Iðx; jÞ ¼ qn;IðxÞd# jð � oxuIðxÞÞ: ð27Þ

In order to highlight consistency with the WKB ansatz (14), let us consider the WKB initial wave function

~we
n;IðxÞ ¼ an;IðxÞ expðiuIðxÞ=eÞznoxuI

ðx=eÞ: ð28Þ

At first sight, ~we
n;I 62 Se

n for general uI and an;I (i.e. uIðxÞ 6¼ jx, an;IðxÞ 6¼ 1=
ffiffi
e

p
); but since

8n 2 N; jznjðx=eÞj
2
*
e!0

Zn 2 Rþ;

uniformly for j 2 B, a simple computation shows that the Wigner series ~we
n;I associated to (28) at t ¼ 0

satisfies

~we
n;Iðx; jÞ*

e!0 jan;IðxÞj2Znd# jð � oxuIðxÞÞ:

And what we obtain is nothing but monokinetic band Wigner measures of the type (27) at time t ¼ 0.

Very recently, nonvanishing external potentials have been included in the analysis [12,34]; in this last case,
the transport equation (25) is of Vlasov type and reads

8n 2 N; otwn þ E0
nðjÞoxwn � V 0

e ðxÞojwn ¼ 0: ð29Þ
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One recovers the Hamilton–Jacobi equation (12) from (25) by assuming furthermore that the nth band

Wigner measure is monokinetic (27) [15,27]. Hence each of the nth band position densities satisfies a scalar

conservation law whose velocity field is precisely E0
nðoxuÞ if restricted to the time interval before caustic

onset [15,49]. Also the limiting nth band density qn is precisely the limit (as e ! 0) of the sequence qe
n

associated to (14) and (15)

8n 2 N; ~qe
n :¼ j~we

nj
2
*
e!0 janj2Zn :¼ qn;

at least before caustic onset. In particular, the WKB reconstruction of the wave function (14) and (15)

(together with its associated position density ~qe
n) is more precise than what comes out of the ‘‘totally ho-

mogenized’’ Cauchy problem for the band transport equation (25). We remark that the characteristic
curves of the kinetic equations (25) and (26) are the Hamiltonian trajectories in phase space, (: standing for

time-differentiation)

_X ¼ E0
nðKÞ; _K ¼ �V 0

e ðX Þ; ð30Þ

along which the Borel measure wn remains constant. Taking as an initial data

Kð0Þ ¼ oxuIðX ð0ÞÞ; X ð0Þ ¼ X 2 R;

ones recovers precisely the rays of the Hamilton–Jacobi equation (12). Thus, from the standpoint of the

semiclassical problem (6), this nonlinear equation becomes meaningless if globally understood in a

monovalued (i.e. classical or viscosity) sense. Instead, a concept of multivalued solution relying on the
validity of the bicharacteristics t 7!ðX ;KÞðtÞ associated to both Eq. (12) and the Hamiltonian system (30)

beyond caustic onset must be considered. Hence the monokinetic density is replaced by a linear super-

position

wðt; x; jÞ ¼
XN
k¼1

qkðt; xÞd# jð � oxukðt; xÞÞ; oxuk ¼ uk; ð31Þ

and the corresponding N-branch WKB ansatz of the wave function reads

~we
nðt; xÞ ¼

XN
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lkðt; xÞ

p
exp

i

e
ukðt; xÞ

� �
zukðt;xÞðx=eÞ: ð32Þ

However, solutions of the type (31) are more delicate to handle computationally [11,32,36,48] because it
amounts to solving (or approximating by means of j-moments) a transport equation in the sense of

measures, see however [16,37]. Keeping in mind that our primary interest lies in the bicharacteristics of (30),

(12) (or analogously the associated conservation law obtained by x-differentiation), we are about to show

that they can be extracted from a simpler approach, namely the K-multivalued solutions in the sense of [14].
3. A general numerical strategy for multi-phase WKB

3.1. Introducing K-branch entropy solutions

In this subsection, we summarize the construction of nonnegative ‘‘multibranch solutions’’ of the

Cauchy problem for 1D scalar balance laws with uF 0ðuÞP 0

otuþ oxF ðuÞ þ G0ðxÞ ¼ 0; ð33Þ
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under the nondegeneracy condition

n 2 R such that s
� þ F 0ðnÞf ¼ 0

� ¼ 0; jsj ¼ 1; f 2 R;

through a kinetic formulation as in [14], see also [43,44,52]. Let K 2 N,

HK :¼ h 2 C0ðRÞ; oKn hðnÞ 2 Rþ
� in D0ðRÞ

n o
;

are test-functions and, for some L 2 Rþ,

FL :¼ f 2 L1; 0
�

6 f 6 1 a:e: with Suppnðf Þ 	 ½0; L�
�

is a set of bounded kinetic densities with finite speed of propagation. Each f 2 FL induces a moment vector
~mðf Þ 2 RK with components

mkðf Þ ¼
Z
Rþ

nk�1f ðnÞ dn; k ¼ 1; . . . ;K: ð34Þ

It is therefore possible to define the set of ‘‘realizable moments’’,

ML
K ¼ ~m 2 RK ; 9f 2 FL such that ~m

n
¼ ~mðf Þ

o
;

on which one formulates the following minimization problem:

Jh
Kð~mÞ ¼ inf

f2FL

Z
Rþ

hðnÞf ðnÞ dn where ~mðf Þ
�

¼ ~m 2 ML
K and h 2 HK

�
:

It is shown in [14] that for any ~m 2 ML
K , there exists a unique solution of this problem called the K-branch

Maxwellian. The minimizer is independent of the test-function h 2 HK . It is determined by a vector of
nonnegative real numbers ~u ¼ ðu1; . . . ; uKÞ in decreasing order and reads

MK;~mðu1; . . . ; uK ; nÞ ¼
XK
k¼1

ð�1Þk�1Hðuk � nÞ; uk > ukþ1 P 0; ð35Þ

where H stands for the Heaviside function. The ‘‘realizable moments’’ are given by the following map
~m : ½0; L�K ! ML

K

m‘ðu1; . . . ; uKÞ :¼
1

‘

XK
k¼1

ð�1Þk�1ðukÞ‘; ‘ ¼ 1; . . . ;K: ð36Þ

It realizes a smooth one-to-one mapping of the uk �s as long as uk > ukþ1 for all k under consideration. This

leads to the following definition.

Definition 2 (K-multivalued solutions [14]). Any measurable function f0; 1g 3 f ðt; x; nÞ on Rþ � R� Rþ

satisfying the following kinetic equation in the sense of distributions

otf þ F 0ðnÞoxf � G0ðxÞonf ¼ ð�1ÞK�1
oKn ~m; f ðt; x; nÞ ¼ MK;~mðf Þ ð37Þ

with ~m a nonnegative Radon measure on Rþ � R� Rþ is a K-multivalued solution.

Theoretical results for K-multivalued solutions are provided in [14,52]. For K > 1, K-multivalued so-

lutions generalize Kru�zkov�s notion of bounded entropy solution of (33); in the special cases K ¼ 1 and
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K ¼ 2, these statements coincide with the ones written in [43,44]. There is also equivalence between the

kinetic equation and the hyperbolic system acting on the ‘‘realizable moments’’.

Theorem 2 (cf. [14]). A measurable functionFL 3 f ðt; x; nÞ ¼
PK

k¼1ð�1Þk�1Hðukðt; xÞ � nÞ is a K-multivalued

solution if and only if the entropy inequalities hold in D0ðRþ � RÞ for any h 2 HK:

ot

Z
Rþ

hðnÞf ðnÞ dnþ ox

Z
Rþ

F 0ðnÞhðnÞf ðnÞ dnþ G0ðxÞ
Z
Rþ

h0ðnÞf ðnÞ dn 6 0;
¼ 0 if oKn h � 0:

�
ð38Þ

For hðnÞ ¼ n‘, ‘ ¼ 0; 1; . . . ;K � 1, one gets out of (38) the following set of K equations:

ot~mþ oxFKð~mÞ þ G0ðxÞ

0

m1

..

.

ðK � 1ÞmK�1

0
BBB@

1
CCCA ¼ 0; m‘þ1ðt; xÞ ¼

Z
Rþ

n‘f ðt; x; nÞ dn: ð39Þ

This system is nonstrictly hyperbolic and diagonalizes in Riemann coordinates. For smooth solutions, the

uk �s appearing in (35) are strong Riemann invariants and each one satisfies (33). System (39) is strictly

hyperbolic if and only if they are all distinct; in this case, uk > ukþ1 and the map ~m (36) is a diffeomorphism.

It has been shown in [32] that this system is equivalent to the moment system obtained from (25) to (31) as

long as K is big enough to keep ~m � 0 in (37); more precisely, one has (see also Theorem 3.5 in [14]).

Theorem 3 (Equivalence of moment systems [32]). Let uI :¼ oxuI be a smooth function and for some n 2 N,

~wnðt ¼ 0; x; nÞ be the solution of the Liouville equation (29) with initial condition, ~wnðt ¼ 0; x; nÞ ¼ HðuI � nÞ.
Consider the set

C ¼ n 2 Rþ such that ~wnðt; x; nÞ
n

¼ 1 for some ðt; xÞ 2 Rþ � R
o
:

Assume that C has only M connected components. If

(i) M ¼ ð1=2ÞðK þ 1Þ (K odd) or M ¼ K=2 (K even),

(ii) N ¼ K in (31),

then the moment systems obtained from ð29Þ with the Maxwellians ð31Þ and ð35Þ produce the same velocities

ukðt; xÞ, k ¼ 1; 2; . . . ;K.

Theorem 3 ensures that the ansatz (35) can be used to obtain the velocities uk �s in the post-caustic onset

representation of the solution (31) of the band transport equation (29) without having to handle weakly

hyperbolic moment systems as in [36,48]. Then the corresponding densities qk (or the intensities lk) are

simply computed as a postprocessing relying on the exact solution of the linear continuity equation (13).

Hence we introduce:

Definition 3 (K-branch entropy solutions [30]). A K-branch entropy solution of (33) is any set ~u of K
nonnegative measurable functions ukðt; xÞ in L1ðRþ � RÞ such that uk > ukþ1 and for which (38) holds with
f ðt; x; nÞ ¼

PK
k¼1ð�1Þk�1Hðukðt; xÞ � nÞ.

K-branch entropy solutions enjoy a ‘‘finite superposition principle’’ as shown in [48] since they match the

solutions by characteristics [13,35] for K big enough. This last property is of special interest since the WKB
system (15) has to be understood as a Correspondence Principle between quantum and classical mechanics.

Since the Hamilton–Jacobi equation produces a possibly multivalued solution, we interpret it relying on the

preceding framework; differentiating in the space variable, we pass from (12) to an equation of the type (33)
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otuþ oxEnðuÞ þ V 0
e ðxÞ ¼ 0; F 0ðnÞ ¼ E0

nðnÞ; G0ðxÞ ¼ V 0
e ðxÞ: ð40Þ

K-branch entropy solutions produce an approximation of order e to (6)–(10) for K big enough as they are
concerned only with (12); to complete the ansatz, (13) has to be processed too. Indeed we shall see in the

next section how to deduce very easily the corresponding intensities lk, k ¼ 1; 2; . . . ;K so as to keep the

equivalence result of Theorem 3 with the N densities qk in (31). Let us also mention that theoretical stability

results are available in the strictly hyperbolic case and for V 0
e 2 L1 \ L1ðRÞ as a byproduct of [1,9,28–30].

The choice of determining K with the purpose of representing all branches of the multivalued solution

can be done in two ways: one relies on theoretical results concerning the singularities appearing in the

solution and studied in e.g. [35,51] (see especially Theorem 4.1 in [51] where it is proven that the number of

disjoint shock curves in Kru�zkov�s solution of (33) is equal to the number of negative minima of oxF 0ðu0Þ in
case F is strictly convex) whereas the other is based on the remark that a shortage of moments manifests

itself through the appearance of a compressive Lax�s shock in the K-branch solution (see [32] for an

illustration).
3.2. The general numerical procedure

All in all, a general computational approach for the homogenization-semiclassical limit of the

Schr€odinger equation (6) can be outlined:
• Determine the band structure and the Bloch states (cf. Section 2.2) and fix the band index n 2 N corre-

sponding to, say, the first conduction band.

• Determine the single-valued velocities u1; . . . ; uK (making up altogether the multivalued velocity) as a K-

branch entropy solution of (40) in the sense of Definition 3 with initial data (48).

• Compute each one of the corresponding intensities lk by solving (13) for the chosen band j 7!EnðjÞ of
course using the same initial data.

• Set up the approximate K-branch wave function (32). Here the local phases uk are meant to satisfy

oxuk ¼ uk, k ¼ 1; . . . ;K; the integration constants needed in order to fully determine them involve Ma-
slov�s phase-shifts, which are not however important in the context of approximation of quadratic ob-

servables. (A method for deriving directly multivalued phases without Maslov�s indices has been recently

presented in [16].)

In particular, we shall approximate the position density in the following way:

~qe
nðt; xÞ ¼ ~we

n
~we
nðt; xÞ ¼ j~we

nðt; xÞj
2 ’

XK
k¼1

lkðt; xÞjzukðt;xÞðx=eÞj
2
; ð41Þ

together with the current density,

~J e
nðt; xÞ ¼ eI ~we

nðt; xÞox~w
e
nðt; xÞ

� �
’
XK
k¼1

lkðt; xÞukðt; xÞjzukðt;xÞðx=eÞj
2
;

taking into account the fact that each of the cross-terms appearing when multiplying different branches of

the WKB wave function should converge to zero weakly with e ! 0, as shown by means of a (formal)

computation based on the stationary phase lemma:

8t > 0;

Z
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lklk0 ðt; xÞ

p
exp i ukðð � uk0 Þðt; xÞ=eÞzuk ðx=eÞzuk0 ðx=eÞUðt; xÞ dx

for all smooth test-function U can be written using Fourier series of the 2p-periodic modulations zjðxÞ as
follows:
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X
m;n2Z

Z
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lklk0 ðt; xÞ

p
exp i ukðt; xÞðð � uk0 ðt; xÞ þ ðm� nÞxÞ=eÞẑmuk ẑnuk0Uðt; xÞ dx: ð42Þ

Thus the only contributions of order 1 as e ! 0 stem from the stationary points of the function

Sm;nðxÞ ¼ ukðt; xÞ � uk0 ðt; xÞ þ ðm� nÞx, i.e. ukðt; xÞ þ m ¼ uk0 ðt; xÞ þ n with m; n 2 Z. This means in partic-

ular that on caustic points where ukðt; xÞ ¼ ukþ1ðt; xÞ for some k 2 N, (41) would not be correct. In case

m 6¼ n, taking velocities small enough (like jukj < 0:5) can ensure that (41) will fail only in the neighborhood

of caustics for small e.
3.3. Fourier and parabolic band approximations

A genuine drawback is that the energy bands j 7!EnðjÞ are not known analytically; so the derivation of

fluxes of the type
R
Rþ E0

nðnÞhðnÞf ðnÞ dn inside the system (38) is not easy on a computational level. One way

out will be to take advantage of the smoothness and symmetry of EnðjÞ writing it as a Fourier series

EðjÞ ¼ Ê0

2
þ
X
q2N�

Êq cosð2pqjÞ; Êq ¼ 4

Z 1
2

0

EðjÞ cosð2pqjÞ dj: ð43Þ

We shall also use a more standard procedure as our main interest lies only in simulating the dynamics of the

last valence and the first conduction bands (the second and third ones from bottom up in Fig. 1). Namely,

the so-called parabolic band approximation consists in writing them as quadratic functions of the wave-
number, [2,47]

EcðjÞ ’ Ecð0Þ þ
j2

2m� ; jjj 
 1

2
: ð44Þ

The number m� > 0 is called the electron�s effective mass and heavily depends on the potential V through

the bands diagram. In the case V ðxÞ ¼ cosðxÞ, one finds the numerical values which give a good approxi-

mation for jjj6 0:3,

m� ¼ 0:2783; Ecð0Þ ¼ 0:8536;

whereas the Kronig–Penney�s model seems to be more restrictive with jjj6 0:2 and

m� ¼ 0:1915; Ecð0Þ ¼ 1:2332:

Therefore, the WKB equations (15) boil down to

otuþ Ecð0Þ þ
1

2m� ðoxuÞ
2 þ VeðxÞ ¼ 0; otlþ 1

m� ox loxuð Þ ¼ 0; l ¼ ðanÞ2: ð45Þ

Of course, this system bears a lot of similarities with the one studied in [30]. So, differentiating (45) with

respect to x and interpreting the so-obtained scalar balance law relying on [14] yields for

f ðt; x; nÞ ¼
PK

k¼1ð�1Þk�1Hðukðt; xÞ � nÞ

ot

Z
Rþ

n‘f ðnÞ dn
� �

‘¼0;...;K�1

þ 1

m� ox

Z
Rþ

n‘þ1f ðnÞ dn
� �

‘¼0;...;K�1

¼~0; ð46Þ

which is a special case of (39). We shall limit ourselves mainly to the cases K ¼ 2; 3. The intensities have to
be sought as e.g. duality solutions [9] of the K continuity equations
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otðl‘Þ þ
1

m� oxðu‘ l‘Þ ¼ 0; ‘ ¼ 1; . . . ;K: ð47Þ

The initial data for (46) are modified by a small parameter jgj 
 1 in order to keep the system in a strictly

hyperbolic region [30] and read

u‘ðt ¼ 0; xÞ ¼ oxuðt ¼ 0; xÞ � g ‘

�
� K þ 1

2

�
; l‘ðt ¼ 0; xÞ ¼ lðt ¼ 0; xÞ: ð48Þ
4. Numerical processing of parabolic bands

4.1. Computation of the velocities and their corresponding intensities

From now on, we assume that the external potential Ve vanishes identically and we consider a uniform

cartesian grid determined by the two positive parameters Dx, Dt which stand for the mesh-size and the time-

step, respectively. We shall denote xj ¼ jDx, xjþ1=2 ¼ ðjþ 1=2ÞDx, tn ¼ nDt, and generic computational cells

read

T n
j ¼ tn; tnþ1

� �
:� xj�1

2
; xjþ1

2

h h
; ðj; nÞ 2 Z:�N:

As usual, the parameter k will refer to Dt=Dx. Then, for a given K > 1, the grid functions ð~mn
j ;~l

n
j Þ 2 ðRKÞ2

stand for some numerical approximations of the moments in (46) ~mðtn; xjÞ and the intensities~lðtn; xjÞ in (47)

on each T n
j . K-branch solutions are updated in time with an explicit Euler marching method

~mnþ1
j ¼ ~mn

j �
k

2m� FKð~mn
j ; ~m

n
jþ1Þ

�
� FKð~mn

j�1; ~m
n
j Þ
�
; j 2 Z:

Relying on previous experience [30–32], we selected the simple local Lax–Friedrichs (LLxF for short) nu-

merical flux vector which in the present setting reads

FKð~mn
j ; ~m

n
jþ1Þ ¼

1

‘

XK
k¼1

ð
(

� 1Þk�1 ðu‘kÞ
n
j

h
þ ðu‘kÞ

n
jþ1

i)
‘¼2;...;Kþ1

� max
k;j;jþ1

jukjn ~mn
jþ1

�
� ~mn

j

�
: ð49Þ

A crucial step lies clearly in finding out the relations between the moments mk �s and the Riemann coor-

dinates uk �s; they constitute a Vandermonde system and have been solved in [48]. We recall briefly here the

cases K ¼ 2 and K ¼ 3 since they correspond to the generic 1D singularities. From (36), we have

m1 ¼ u1 � u2; m2 ¼
1

2
ðu1Þ2
�

� ðu2Þ2
�
;

and this can obviously be inverted

u1 ¼
m2

m1

þ m1

2
; u2 ¼

m2

m1

� m1

2
;

in order to find the last component of the fluxes

m3 ¼
1

3
ðu1Þ3
�

� ðu2Þ3
�
¼ ðm2Þ2

m1

þ ðm1Þ3

12
:
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For K ¼ 3, things get worse and following [48]

u2 ¼
�ðm1Þ3 � 6m3 þ 6m1m2

3 ðm1Þ2 � 2m2

� � ; u1;3 ¼
4 ðm1Þ3 � 3m3

� �
�

ffiffiffiffi
D

p

12 ðm1Þ2 � 2m2

� � ;

where

D ¼ 16 ðm1Þ3
�

� 3m3

�2
� 24 ðm1Þ2

�
� 2m2

�
ðm1Þ4
�

þ 12ðm2Þ2 � 12m3m1

�
:

One can write m4 ¼ ð1=4Þððu1Þ4 � ðu2Þ4 þ ðu3Þ4Þ in terms of m1;m2;m3 to close the system. At this point, one

is able to propagate in time the ~mn
j and thus the corresponding~unj . We now explain how the intensities~ln

j can

be deduced in order to keep the equivalence Theorem 3 true even for nontrivial initial densities qI . The

continuity equation of (45) implies for k ¼ 1; . . . ;K,

lkðt; xÞ ¼ lkðt ¼ 0; x0Þ
ox0
ox


;
x ¼ x0 þ t:ukðt ¼ 0; x0Þ=m� ¼ x0 þ t:ukðt; xÞ=m�;

since the Hamilton–Jacobi equation is homogeneous and its characteristics are straight lines along which

the uk �s are constant. Hence for any x 2 R and t > 0, the starting point x0 is explicitly known when having

the values ukðt; xÞ

x0 ¼ x� t:ukðt; xÞ
m� ) ox0

ox
¼ 1� t:oxukðt; xÞ

m� ; k ¼ 1; . . . ;K:

Numerically, if ~unj is known up to n ¼ tn=Dt this last expression rewrites

8j 2 Z; ðlkÞ
n
j ¼ l t

�
¼ 0; xj �

tnðukÞnj
m�

�
1

 � tn

2m�Dx
ðukÞnjþ1

�
� ðukÞnj�1

�:
The accuracy of the intensities ~ln

j is considerably improved when compared to the results obtained with

finite-differences in [30,31] and cheaper compared to [36,48]. The validity of this approach comes from the
fact it is at least as accurate as the standard marching schemes studied in [31] and the discretizations used in

[11,32]. Concerning the initial datum, we selected g ¼ Dx=100.
4.2. The Mathieu equation: V (x)¼ cos(x)

As an illustration of the preceding statements, we consider in this section a simulation of (45) and (46)

for initial data modelling a self-interfering Gaussian pulse as in [30,32]

u0ðxÞ ¼ 0:3 sinðxÞ; l0ðxÞ ¼ exp
�
� ðx� pÞ2

�
:

In this case, we are in position to use the results of [51] to find out the correct value of K: the function

m�oxF 0ðu0ÞðxÞ ¼ u00ðxÞ ¼ 0:3 cosðxÞ has a unique negative minimum inside ½0; 2p�, thus a unique shock curve
is expected to appear in the Kru�zkov�s entropy solution. This corresponds to a cusp according to [35] and

therefore K ¼ 3. The parameter 0.3 forces the K-branch solutions to remain inside the portion of the

Brillouin zone where the parabolic approximation (44) holds true. Moreover, by (42), we can think that our

approximations of the position density will be qualitatively correct since jukðt; xÞj6 0:3 for k ¼ 1; 2; 3 and
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t > 0. We selected Dx ¼ 2p=512, Dt ¼ Dx=1:3 and iterated the scheme (49) up to T ¼ 3 to obtain Fig. 5.

These results suggest that the rendering of the trivalued solution is consistent with the ray-traced picture

(30) away from phase transitions, i.e. points where the solution bifurcates from one to three values si-
multaneously. At these locations, undercompressive shocks moving at characteristic speed appear in ~mðt; :Þ
[30,32]. The scheme (49) keeps away from these nonstrict hyperbolicity points and this has consequences on

the intensities~lðt; :Þ. As already observed in [30,32], the N-wave developing around the sonic point x ¼ 0 is

not perfectly rendered and this becomes noticeable on~lðt; :Þ. In order to check consistency with the genuine

Schr€odinger equation, we simulated (2), (14) by means of a Fourier solver to compare the position densities

for e ¼ 1=5, 1/10, 1/15,1/20, 1/30, 1/50; see Fig. 6.

We give here some details about the numerical solver we set up for solving (2), (14) in the special case

V ðxÞ ¼ cosðxÞ. Another possible strategy can be obtained from [5]. The ansatz (14) reads
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Fig. 6. Comparison between the WKB anzatz (14) (dotted lines) and the Fourier scheme (50) (solid lines) in T ¼ 3.
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~we
nðt ¼ 0; xÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
l0ðxÞ

p
expðiu0ðxÞ=eÞznu0ðxÞðx=eÞ; oxu0ðxÞ ¼ u0ðxÞ;

where n ¼ 3 corresponds to the first conduction band (see Figs. 1 and 2). We select an artificial period

L 2 Rþ large enough to keep the aliasing effect small and expand wðt; :Þ in its Fourier series for x 2 ½0; L�

wðt; xÞ ¼
X
q2Z

ŵqðtÞ expð2piqx=LÞ; ŵqðtÞ ¼
1

L

Z L

0

wðt; xÞ expð�2piqx=LÞ dx:

We can now select values of e such that 1=e is an integer multiple of 2p=L. Then, for all t > 0, the Fourier

coefficients ŵqðtÞ satisfy the following differential system because for the Mathieu�s equation, we have
V ðxÞ ¼ ðexpðixÞ þ expð�ixÞÞ=2:

8q 2 Z; ie
dŵqðtÞ
dt

¼ 1

2
ŵq� L

2pe
ðtÞ

�
þ q2e2ŵqðtÞ þ ŵqþ L

2pe
ðtÞ
�
: ð50Þ

Of course, in practice, one has to consider a finite set of coefficients only, that is to say wqðtÞ � 0 for

jqj > M 2 N: we chose M ¼ 2048 together with L ¼ 2p. The numerical comparison between the ‘‘3-branch

position density’’ (41) and the one which is deduced from the Fourier scheme (50) suggest that the WKB

approximation is qualitatively correct already for e ¼ 1=5 away from the caustics (we stress that its ac-
curacy is supposed to be of the order of eþ Dx). The low accuracy already noticed around the stagnation

point x ¼ 0 can be observed again within this comparison for all values of e. One can see that even if some

noise affects the Schr€odinger solution for some values of e, the WKB structure and the modulations slowly

emerge as e ! 0. Despite the very large number of coefficients involved, the Fourier scheme seems to lose

accuracy for e6 1=30. In Fig. 7, a comparison is displayed for e ¼ 1=5; 1=15; 1=25; 1=35 in normal scale.
5. Computations inside the whole Brillouin zone

5.1. Velocities and intensities derivation

It is clear looking at Fig. 4 that the parabolic band approximation is only valid for a portion of the

Brillouin zone B whose size depends on the bands structure induced by V ðxÞ. It can cover 60% of B for the

Mathieu�s equation, but is shrinks to less than 40% for the Kronig–Penney�s model. Hence in order to carry

out high field simulations, one can feel the need for a more sophisticate approach still based on K-branch

entropy solutions but taking into account for the whole band structure. Indeed, as the first conduction band
j 7!EðjÞ is 1-periodic, even and smooth even at the edges of the Brillouin zone, it can be written as a

Fourier series (43) where the coefficients Êq decay very quickly with q 2 N. We display in Fig. 8 the resulting

approximation for the conduction bands in Fig. 1. In order to cope with the framework presented in

Section 2.3, we have now to consider that F 0ðuÞ ¼ E0ðuÞ in (33) and this leads us to slightly more intricate

moment systems

ot

Z
Rþ

n‘f ðnÞ dn
� �

‘¼0;...;K�1

þ ox

Z
Rþ

n‘E0ðnÞf ðnÞ dn
� �

‘¼0;...;K�1

¼~0: ð51Þ

Let us mention however that in this case, the resulting systems (51) are nonstrictly hyperbolic and

nongenuinely nonlinear in the sense of Lax [3]. System (51) is hyperbolic since it has a convex entropy [14].

However, in the Riemann coordinates, it rewrites for smooth solutions

otuk þ E0ðukÞoxuk ¼ 0; k ¼ 1; . . . ;K:
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Since j 7!EðjÞ is 1-periodic, (51) is nongenuinely nonlinear and strict hyperbolicity is lost when uk ¼ ukþ1

for some k. We see that the fluxes appearing in (51) are given by integrals of the formZ
Rþ

n‘E0ðnÞf ðt; x; nÞ dn ¼
X
q2N�

�Êq

Z
Rþ

2pqn‘ sinð2pqnÞf ðt; x; nÞ dn;

where ‘ ¼ 0; . . . ;K � 1 and f ðt; x; nÞ ¼
PK

k¼1ð�1Þk�1Hðukðt; xÞ � nÞ. It turns out that the right-hand side can
be computed exactly with integrations by parts. For instance, in the cases K ¼ 2; 3, one has for any k 2 R,Z u

0

nk sinðknÞ dn ¼ �u cosðkuÞ þ sinðkuÞ
k

;

Z u

0

n2k sinðknÞ dn ¼ �u2 cosðkuÞ þ 2u sinðkuÞ
k

þ 2ðcosðkuÞ � 1Þ
k2

:

We follow the same lines as in the preceding section; of course the numerical fluxes are more involved and

one must replace (49) with

FKð~mn
j ; ~m

n
jþ1Þ ¼

XK
k¼1

ð
(

� 1Þk�1

Z ðu‘kÞ
n
j

0

 
þ
Z ðu‘kÞ

n
jþ1

0

!
n‘�1E0ðnÞ dn

)
‘¼1;...;K

� max
k; j;jþ1

jE0ðukÞjn ~mn
jþ1

�
� ~mn

j

�
:

ð52Þ

In order to complete the ansatz (14), we still have to deduce the values of~lðtn; xjÞ for j; n in Z�N. This will

be done accordingly; for all k under consideration, we deduce from (13) that

lkðt; xÞ ¼ lkðt ¼ 0; x0Þ
ox0
ox


; x ¼ x0 þ t:E0ðukðt; xÞÞ;

and this paves the way for recovering numerically the~ln
j out of the set of~u

n
j for all j 2 Z, k ¼ 1; . . . ;K, with

the formula

ðlkÞ
n
j ¼ l t

�
¼ 0; xj � tnE0 ðukÞnj

� ��
1

 � tn

2Dx
E0ððukÞnjþ1Þ
�

� E0ððukÞnj�1Þ
�:

We chosed to limit ourselves to eight Fourier coefficients in (43) for the computations.
5.2. The Mathieu equation revisited

We first simulated the 3-branch entropy solutions by means of (51) and (52). Furthermore, the corre-

sponding intensities have been derived accordingly. The parameters used were Dx ¼ Dt ¼ 2p=512 The

consistency with the ray-traced solution (30) is clear in Fig. 9 despite the fact that u0 covers a large part of

the Brillouin zone. In particular, the parabolic band approach of Section 4.2 would produce a very poor

approximation because E0ðminðu0ÞÞ ¼ E0ðmaxðu0ÞÞ ¼ 0. We consider V ðxÞ ¼ cosðxÞ inside (2) with the an-
satz (14) where

u0ðxÞ ¼
1

2
exp

�
� ðx� pÞ2

�
; l0ðxÞ ¼

1

p
exp

�
� ðx� pÞ2

�
;

which implies that
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u0ðxÞ ¼
ffiffiffi
p

p

4
erfðpÞð þ erfðx� pÞÞ; erfðxÞ ¼ 2ffiffiffi

p
p

Z x

0

expð�s2Þ ds:

In Fig. 9, one can observe two distinct multivalued zones which appear to be rendered differently. The first

one (x 2 ½3; 4:2�) is fully developed and quite well approximated by the K-branch solution; however, the
second one (x 2 ½4:7; 5:3�) is much narrower and the N-wave is not very good. This will have consequences

when deducing quadratic observables like the position density. Hence we also wanted to check again the

consistency with a direct simulation of (2) by means of (50) with M ¼ 2048. In Fig. 10, we display the

outcome of both approaches for Dt ¼ Dx ¼ 2p=512 in T ¼ 1:5 for e ¼ 1=5; 1=10; 1=15; 1=20; 1=30; 1=50; at
this time, the multivalued solution developed several caustics inside the interval x 2 ½3; 6�; we observe that in
the region x 2 ½3:5; 4:5�, the WKB approximation behaves quite well. We also see perfect agreement for

e 2 ½1=20; 1=5� inside the domain x 2 ½0; 1� [ ½5; 2p�; for e6 1=30, the Fourier scheme seems to be over-

whelmed. Before this happens, we observe some sort of slow and oscillatory decay, especially inside the
Whitham�s region x 2 ½3; 6�; in particular, signals propagate at a correct speed. The gap between the two

numerical solutions remains at a correct level except at the blow-up points: this last feature being an in-

herent defect of the semiclassical WKB approach; cf. [45]. Moreover inside certain portions of the com-

putational domain, the agreement between the two numerical strategies seems to hold pointwise. In any
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Fig. 10. Comparison between the WKB anzatz (14) (dotted lines) and the Fourier scheme (50) (solid line) in T ¼ 1:5.
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case, it looks much better than the parabolic band approximation, Figs. 6 and 7. A comparison in normal

scale is displayed in Fig. 11 for e ¼ 1=5; 1=15; 1=25; 1=35.

5.3. The discontinuous Kronig–Penney model

We now switch to the potential (19) together with similar initial data

u0ðxÞ ¼
1

2
exp

�
� ðx� pÞ2

�
; l0ðxÞ ¼

1

p
exp

�
� 2ðx� pÞ2

�
:

Once again, a good agreement is observed between the ray-traced solution (30) and the 3-branch so-

lutions we got out of (51), (52) after breakup at time T ¼ 1:05; see Fig. 12. Two differences appear when

comparing with Mathieu�s equation: stronger oscillations show up on the intensities~l and the (supposedly

steady) nonstrict hyperbolicity point maxð~uÞ is not well rendered. This is related to the fact that

B 3 j 7!EðjÞ varies much more (as can be checked in Fig. 8). Thus the effect of numerical viscosity is

noticeable; the parameters used were Dx ¼ 2p=512 and Dt ¼ 0:8Dx. We close this section mentioning that
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the Fourier scheme (50) extends easily to this case relying on the Fourier decomposition of the considered

potential V ðxÞ (which is known to be 2p-periodic):

V ðxÞ ¼
X
‘2Z

V̂‘ expði‘xÞ; V̂‘ ¼
1

2p

Z 2p

0

V ðxÞ expð�i‘xÞ dx:

Hence, for L ¼ 2p, the differential system (50) is modified accordingly for 1=e 2 N:

8q 2 Z; ie
dŵqðtÞ
dt

¼ q2e2

2
ŵqðtÞ þ

X
‘2Z

V‘ŵq�‘=e:

Of course, as in Section 3.2, one can only consider a finite number of Fourier coefficients when integrating

this differential system. Actually this enlightens the big difficulty lying in a direct numerical simulation of

the semiclassical limit e ! 0: namely, with smaller e, the periodic potential affects higher and higher fre-
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quencies. The situation gets even worse when low-regularity potentials are involved for which the coeffi-

cients V̂‘ do not decay quickly with j‘j ! þ1.
6. Conclusion and perspectives

So far, we have dealt with basic cases where short-scale periodic potentials take into account only for

interaction with atoms of identical nature inside the crystal. Now, suppose that we add an impurity from

column V in the Periodic Table to a semiconductor such as Silicon or Germanium which are both in

column IV. This impurity atom will have one more electron that is needed to satisfy the valency require-

ments for the tetrahedral bonds formed with four electrons. This extra electron will be free to wander
through the crystal lattice subject of course to Coulomb attraction of the ion core which will have one unit

of positive charge. We are led to consider a slightly more complex Schr€odinger equation in place of (1),

i�hotwþ �h2

2m
oxxw ¼ e V ðxÞ

�
� e
�0jx� xdonorj

�
w; ð53Þ

and �0 2 ½1; 100� (see [2, p. 578]) stands for an average dielectric constant seen by the donor�s electron inside

the crystal [2]. Reformulating (53) in atomic units e ¼ m ¼ �h ¼ 1 ans assuming that V is 2p-periodic on the

atomic length scale, the macroscopic scaling is determined by the slowly varying perturbation

e ¼ 1

�0
; ieotwþ e2

2
oxxw ¼ V

x
e

� ��
� 1

jx� exdonorj

�
w ð54Þ

and one deduces from band Wigner theory, see Section 2.3 and [2,12,27,34,47], that the dynamics of (54) are

given by the nth band Hamiltonian: EnðpÞ � 1=jx� exdonorj. This way, the WKB systems (15) are now en-

dowed with a source term

otuþ EnðoxuÞ ¼
1

jx� exdonorj
; otlþ ox l E0

nðoxuÞ
� �

¼ 0: ð55Þ

Taking x-derivatives, one finds out that F ¼ En and GðxÞ ¼ �1=jx� exdonorj in (33). Thus K-branch solu-

tions are to be processed using sophisticate well-balanced techniques as in [1,30,32], but in a nonconvex and
nonstrictly hyperbolic context. These topics will be developed in the forthcoming Part II of this work.
Appendix A. Naive WKB and effective Hamiltonians

We saw at the beginning of Section 2 that in the simplest case Ve � 0, a naive WKB approach (8) leaves

us with

otu
e þ 1

2
ðoxueÞ2 þ V

x
e

� �
¼ 0

and this Eikonal equation can possibly be homogenized following [19,20,41] in order to get rid of the fast
scale y ¼ x=e. By construction x 7!Hðp; xÞ is 2p-periodic and we can seek the limiting behaviour of viscosity

solutions ue. Indeed, under mild hypotheses, ue ! u satisfying in the sense of viscosity

otuþ �HðoxuÞ ¼ 0; ðA:1Þ

where p 7! �HðpÞ is the effective Hamiltonian whose derivation goes as follows. One considers the so-called

‘‘cell problem’’,
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Hðp þ oyvðyÞ; yÞ ¼ a; ðy; pÞ 2 R2: ðA:2Þ

Then it is proved in [19,41] that for a given p 2 R, there is a unique a ¼ aðpÞ 2 R such that (A.2) admits a
(possibly not unique) 2p-periodic viscosity solution y 7!vðyÞ. Hence the effective Hamiltonian in (A.1) reads

�HðpÞ ¼ a:

This has connections with both classical (a so-called ‘‘generating function of a canonical transformation’’ u
[25,38] is uðyÞ ¼ py þ vðyÞ when v is smooth) and quantum mechanics. In fact, following [24], we consider

the eigenproblem (11) and assume for W:

WðyÞ ¼ expðipyÞ/ðyÞ; /ðyÞ ¼ aðyÞ expðivðyÞÞ:

Then, from (11), we deduce

1

2
jp þ oyvðyÞj2 þ V ðyÞ ¼ EðpÞ þ oyya

2a
; oy aðyÞ2ðp

�
þ oyvÞ

�
¼ 0:

This hints that �HðpÞ ¼ EðpÞ is related to the Bloch spectrum of Hðy; p̂Þ for those bands for which the

amplitude variations are small. We can go a bit further for instance considering the particular case

V ðyÞ ¼ cosðyÞ inside (A.2)

vðyÞ ¼ �py �
Z y

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð �HðpÞ � cosðsÞÞ

q
ds; y 2 ½0; 2p�:

Two cases occur:

• if �HðpÞP maxðcosðyÞÞ, then v 2 C1
perðRÞ. A consequence of 2p-periodicity is

vð0Þ ¼ 0 ¼ vð2pÞ ) p ¼ � 1

2p

Z 2p

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð �HðpÞ � cosðsÞÞ

q
ds:

And this equation has a solution for

jpjP 1

2p

Z 2p

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cosðsÞÞ

p
ds ¼ 4

p
:
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Fig. 13. Comparison between �HðpÞ (solid line) and the band structure (dotted line) for V ðxÞ ¼ cosðxÞ.
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Fig. 14. Comparison between �HðpÞ (solid line) and the band structure (dotted line) for Kronig–Penney�s model.
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• if �HðpÞ < maxðcosðyÞÞ, then following [41], we take �HðpÞ � 1 ¼ maxðcosðxÞÞ.
All in all, this technique gives:

jpj ¼ 1
2p

R 2p
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð �HðpÞ � cosðsÞÞ

p
ds for jpjP 4

p ;

�HðpÞ � 1 ¼ maxðcosðyÞÞ for jpj < 4
p :

8<
:

One recognizes some kind of Bohr–Sommerfeld quantization rule which gives flat bands in the nonclassical

regime EðpÞ < maxðV ðyÞÞ; see [18,38]. We are displaying E1ðjÞ, E2ððj� 1
2
Þ þ 1Þ, E3ðjþ 1Þ, E4ððj� 1

2
Þ þ 2Þ,

E5ðjþ 2Þ for j 2 ½0; 1
2
� in order to compare with p 7! �HðpÞ. This is inspired by the ‘‘nearly free electron

model’’ [2]. When comparing with Fig. 4, one notices that for jjj ¼ 4
p � 1 ’ 0:2732, the first conduction

band enters into the classical regime, i.e. E3ðjÞ > 1. An illustration is provided within Fig. 13.

So, this process is not well-suited for our program because it would imply for instance an infinite effective

mass for the electron since the parabolic band approximation (44) would essentially be

E3ðpÞ ¼ E3ð0Þ ¼ 1:

In the case of the discontinuous Kronig–Penney�s model, one obtains a very simple simple formula for
�H

jpj ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �HðpÞ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð �HðpÞ � 1Þ

p� �
for �HðpÞP 1;

�HðpÞ � 1 ¼ maxðV ðyÞÞ otherwise:

8<
:

See the numerical results in Fig. 14.
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